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1. Introduction

An iterated integral, which has a nested structure, looks like

∫ 1

0

(∫ z

0

(∫ y

0

f(x, y, z)dx

)
dy

)
dz, or simply

∫ 1

0

∫ z

0

∫ y

0

f(x, y, z)dxdydz,

where 0 ≤ x ≤ y ≤ z ≤ 1. The integration domain is a simplex in the cube [0, 1]3, the usual
domain of integration when x, y, z are not ordered.

Although iterated integral is a basic technique in calculus, the theory of iterated integral in-
vented by K. T. Chen ([4]) was for the purpose of constructing functions on the infinite-dimensional
space of paths on a manifold ([3]) and has been seen a lot of connections to modern mathematics
and physics. In this thesis, a brief introduction to iterated integrals and some of its properties
is first introduced, then through interrelated examples in differential equations, knot thoery, sto-
chastic processes ... we try to reveal some common characteristics, thus we can hope to apply
techniques in one area to another through the theme of iterated integrals.

2. Iterated Integrals

Definition 1. Let M be a real or complex manifold and ω1, ..., ωn be 1-forms on M and let
γ : [0, 1] → M be a smooth path. Write

γ∗ωi = fi(t)dt, (1)
1
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for the pullback of the forms ωi to the interval [0, 1] and define∫
γ

ω1 . . . ωn =

∫
0≤t1≤...≤tn≤1

fn(tn) · · · f1(t1)dt1 . . . dtn

=

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

fn(tn)fn−1(tn−1) . . . f1(t1)dt1dt2 . . . dtn,

(2)

which will be called the iterated integral of ω1, ..., ωn along γ. Moreover, define the iterated integral
of empty product of 1-forms to be 1.

Proposition 1. Iterated integrals satisfy the following properties:

(a) If γ−1(t) = γ(1− t) is the inverse path of the path γ, then∫
γ−1

ω1...ωn = (−1)n
∫
γ

ωn...ω1. (3)

(b) (The composition property) If α, β are two paths, denote the path obtianed by first
traversing β then α by αβ, then∫

αβ

ω1 . . . ωn =
n∑

i=0

∫
α

ω1 . . . ωi

∫
β

ωi+1 . . . ωn. (4)

(c) The shuffle property:∫
γ

ω1 . . . ωr

∫
γ

ωr+1 . . . ωr+s =
∑

σ∈Shuff(r,s)

∫
γ

ωσ(1) . . . ωσ(r+s), (5)

where Shuff(r, s) is the set:

Shuff(r, s) =

all permutations σ of (r + s) indices such that

σ(1) < . . . < σ(r) and σ(r + 1) < . . . < σ(r + s)

.

Proof. (a) ∫
γ−1

ω1 . . . ωn =

∫ 0

1

∫ t1

1

. . .

∫ tn−1

1

f1(t1)f2(t2) . . . fn(tn)dtndtn−1 . . . dt1

=

∫ 0

1

∫ 0

tn

· · ·
∫ 0

t2

fn(tn)fn−1(tn−1) . . . f1(t1)dt1dt2 . . . dtn

= (−1)n
∫
γ

ωn . . . ω1.

(6)

.
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(b) Let 0 < x < 1, then

{(t1, t2, . . . , tn) ∈ Rn : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1}

=
n∪

k=0

{(t1, . . . , tk) ∈ Rk : 0 ≤ t1 ≤ . . . ≤ tk ≤ x}

× {(tk+1, . . . , tn) ∈ Rn−k : x ≤ tk+1 ≤ . . . ≤ tn−1 ≤tn}.

(7)

(c) On the R.H.S. of (5), all (r + s) indices are ordered, but on the L.H.S. only the r indices
and the s indices are ordered, so on the R.H.S. we need to count all permutations such that only
the r indices and the s indices are ordered. □

3. Dyson Series

In this section, we introduce an example of iterated integrals as solutions to differential
equations.

3.1. Schrödinger Equation for the Time-evolution Operator. Let time t be a parameter
that ranges over R, a state ket |v, t〉 denote a vector v in a complex vector space V representing
the state of some quantum system at time t. We would like to study the time evolution of the
state ket. Suppose at time t0 the state ket of the system is |α, t0〉, at some later time t > t0, let
us denote the state ket of the system by |α, t0; t〉. Define the time-evolution operator U(t, t0) by
an equation which relates the two kets:

|α, t0; t〉 = U(t, t0)|α, t0〉.

Proposition 2. The time-evolution operator satisfies the following properties ([2]):

(a) U †(t, t0)U(t, t0) = 1. (conservation of probability)

(b) U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0). (the compostion property)

Now we would like to consider an infinitesimal time-evolution operator U(t0 + dt, t0). If we
take

U(t0 + dt, t0) = 1− iΩdt, (8)

where Ω is a Hermitean operator,

Ω† = Ω,
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it can satisfy the two properties for the time-evolution operator. From classical mechanics we know
that the Hamiltonian generates the time evolution, so we should relate Ω to the Hamiltonian H.
Since the dimension of Ω is inverse of time, by Planck-Einstein relation,

E = ℏω, (9)

the relation should naturally be

H = ℏΩ, (10)

where H is assumed to be Hermitian. Therefore, we take the form of the infinitesimal time-
evolution operator to be

U(t0 + dt, t0) = 1− iHdt

ℏ
. (11)

Applying the composition property to the time evolution operator at t0, t1 = t and t2 = t+dt

we have
U(t+ dt, t0) = U(t+ dt, t)U(t, t0)

= (1− iHdt

ℏ
)U(t, t0),

(12)

hence

U(t+ dt, t0)− U(t, t0) = −iHdt

ℏ
U(t, t0). (13)

Combining Taylor series of U(t+ dt, t0) to the first derivative

U(t+ dt, t0) = U(t, t0) +
∂U(t, t0)

∂t
dt (14)

gives us the Schrödinger equation for the time-evolution operator

iℏ
∂

∂t
U(t, t0) = HU(t, t0). (15)

Now let us solve this equation. In general, the Hamiltonians are time-dependent and do not
commute at differet times. Note that by the definition of the time-evolution operator,

U(t0, t0) = 1, (16)

and (8) is equivalent to the integral equation

U(t, t0) = 1− i

ℏ

∫ t

t0

H(s)U(s, t0)ds, (17)

we can apply Picard’s method to solve this equation by successive approximation ([3]): let
U0(t, t0) = U(t0, t0) = 1 be the constant function and define for n ≥ 0,

Un+1(t, t0) = 1− i

ℏ

∫ t

t0

H(s)Un(s, t0)ds, (18)
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then assuming t0 ≤ t1 ≤ . . . ≤ tn = t,

U1(t, t0) = 1− i

ℏ

∫ t

t0

H(t1)U0(t, t0)dt1,

U2(t, t0) = 1− i

ℏ

∫ t

t0

H(t2)U0(t, t0)dt1

+

(
−i

ℏ

)2 ∫ t

t0

∫ t2

t0

H(t2)H(t1)U1(t, t0)U2(t1, t0)dt1dt,

. . .

Un(t, t0) = 1 +
∑
n≥1

(
−i

ℏ

)n ∫ t

t0

∫ tn−1

t0

. . .

∫ t2

t0

H(t) . . . H(t2)H(t1)U0(t, t0)dt1dt2 . . . dt,

= 1 +
∑
n≥1

(
−i

ℏ

)n ∫
t0≤t1≤t2≤...≤t

H(t) . . . H(t2)H(t1)dt1dt2 . . . dt,

. . .

(19)

If limn→∞ Un(t, t0) exists, it gives the solution to (15) and is called the Dyson series. The infinite
sum is an example of iterated integrals. In physics literatures, the Dyson series is written as

U(t, t0) = T
(

exp
(
−i

ℏ

∫
[t0,t]

H(t)dt

))
, (20)

where T is the time-ordering operator.

4. The KZ equation

Let us now see another example in which iterated integrals appear as solutions to differential
equations. First, we introduce the concept of multiple polylogarithms.

Definition 2. Multiple polylogarithms are nested sum of the form ([6])

Lis1,...,sk(z1, . . . , zk) :=
∑

n1>...>nk>0

k∏
j=1

z
nj

j

n
sj
j

,

where s1, . . . , sk and z1, . . . , zk are complex numbers such that the sum converges. In particular,
setting zj = 1 gives us multiple zeta values

ζ(s1, . . . , sk) :=
∑

n1>...>nk>0

k∏
j=1

1

n
sj
j

We now define a specific type of multiple polylogarithms which is relevant to the KZ equation.
Let X = {x0, x1} be an alphabet in two letters and X× be the set of words in x0, x1 and the empty
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word e. Let Q〈x0, x1〉 be the vector space generated by the words in X, equipped with the shuffle
product:

xi1 . . . xir � xir+1 . . . xir+s =
∑

σ∈Shuff(r,s)

xσ(1) . . . xσ(r+s), (21)

and where e� w = w� e = w for all w ∈ X∗. To every non-empty word w ∈ X∗, we associate a
multivalued function Liw(z) as follows:

1) If w ends with x1, write w = xn1−1
0 x1 . . . x

nk−1
0 x1 and let

Liw(z) =
∫ z

0

ω1ω
n1−1
0 ω1 . . . ω

nk−1
0 = Lin1,...,nk

(z) (22)

where ω0 =
dz
z

, ω1 =
dz
1−z

are 1-forms defined on M = C \ {0, 1} and z1, . . . , zk−1 are set to 1. To
see the equality, note that

d

dz
Lin1,...,nk

(z) =


1
z
Lin1,...,nk−1(z), if nk > 1,

1
1−z

Lin1,...,nk−1
(z), if nk = 1.

(23)

It follows that for nk > 1,

Lin1,...,nk
(z) =

∫
γ

Lin1,...,nk−1(z)
dt

t
, (24)

then let 0 ≤ . . . ≤ t′1 ≤ . . . ≤ t′n2
≤ t1 ≤ . . . ≤ tn1 ≤ 1,∫

γ

ω1ω
n1−1
0 ω1 . . . ω

nk−1
0 = . . .

(∫
0≤t′1≤...≤t′n2

≤1

(∫
0≤t1≤...≤tn1≤1

zdt1
1− zt1

dt2
t2

. . .
dtn1

tn1

)
zdt′1

1− zt′1

dt′2
t′2

. . .
dtn′

2

t′n2

)
. . .

= Lin1,...,nk
(z).

(25)

2) Set

Lixn
0
(z) =

1

n!
logn(z), (26)

then any word can be composed by xn
0 and words which end with x1 by the composition property

of iterated integrals.

Consider the generating series

L(z) =
∑
w∈X∗

wLiw(z), (27)

it defines a multivalued function on M taking values in

C[[X]] = {
∑
w∈X∗

Sww : Sw ∈ C}, (28)

the ring of non-commutative formal power series in the words X∗, with the multiplication being
the concatenation of words (w1 × w2 = w1w2).
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By (23), L(z) satisfies the differential equation

d

dz
L(z) =

(
x0

z
+

x1

z − 1

)
L(z), (29)

which is the one-dimensional Knizhnik–Zamolodchikov equation.

Note that for words w 6= xn
0 ,

lim
z→0

Liw(z) = 0, (30)

we have

L(z) ∼ exp(x0logz) as z → 0. (31)

Similarly, there exists another solution

L1(z) ∼ exp(x1log(1− z)) as z → 1. (32)

Define the Drinfel’d associator Φ(z) by an equation which relates the two solutions:

L(z) = L1(z)Φ(z), (33)

we denote it by Φ(x0, x1).

Proposition 3. Φ(x0, x1) is a constant series.

Proof. Differentiating L1(z)Φ(z) = L(z) and use (29), we have

L1dΦ(z) = 0. (34)

Since L1 is invertible, dΦ(z) = 0. □

Proposition 4. The coefficients of Φ(x0, x1) are multiple zeta values.

Proof. By (32),

Φ(x0, x1) = lim
z→1−

(exp(−x1log(1− z))L(z)), (35)

so for words w ∈ x0X
∗x1,

Φ(x0, x1) = L(1) =
∑

wζ(w). (36)
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Next, we can use the shuffle property to write any word by x0, x1 and x0X
∗x1:

ζ(x0) = ζ(x1) = 0,

ζ(x0x0) =
1

2
ζ(x0� x0) =

1

2
ζ(x0)ζ(x0) = 0,

ζ(x0x1) = ζ(2),

ζ(x1x0) = ζ(x1� x0 − x0x1) = ζ(x0)ζ(x1)− ζ(x0x1) = −ζ(2),

ζ(x1x1) =
1

2
ζ(x1� x1) = 0,

. . .

(37)

We have

Φ(x0, x1) = 1 + ζ(2)[x0, x1] + ζ(3)([x0, [x0, x1]− [x0, x1], x1]) + . . . . (38)

□

In the next section, we will interpret this formula in terms of knots.

5. The Kontsevich Integral

In this section, we show how iterated integrals appear in knot theory.

In the construction of the Kontsevich integral, R3 where the tangles are defined is represented
as a product of complex plane C with coordinate z and real line R with coordinate t.

Intuitively, the Kontsevich integral counts the number of “twists” between
strands in a tangle so it’s always an integer or half an integer. For example, the
number of twists between two strands in the right figure can be computed as

1

2πi

∫ 1

0

dz1 − dz2
z1 − z2

.

The Kontsevich integral can be regarded as a way of counting twists at various “scales”: there
could be twists of twists, for example, in the following figure, the twists of tubes produce an
underlying twist for the twisting strands inside the tubes, if we call the twists of tube “first order”
(ε), then the twists of strands are of second order (ε2).

To construct the Kontsevich integral, cut the knot into several parts by some slices on t such
that each part contains one of the three basic events:
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Now we can replace a knot by chord diagrams according to the followings rules:

m,M 7→ 1,

B+ 7→ R, B− 7→ R−1,

A+ 7→ Φ, A− 7→ Φ−1

(39)

where

.

Then compute the product of these diagrams from top to bottom (see details in [8]).

Φ is the Drinfel’d associator in chord diagrams which relate three adjacent strands in a knot
and chord diagrams in R relate two adjacent strands, so the Knotsevich integral gives us a way to
obtain information of all twists by decomposing them into local information only involved in two
or three strands. Also note that the more chords we use in the construction, the more information
we get in higher order twists, which is similar to the construction of the Dyson series.
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6. T -exponential

In this section, we further discuss the T -exponential we introduced in (20). We first introduce
an alternative way to solve for (15): divide the interval [0, t] into N parts evenly by 0 = t0 < t1 <

t2 < . . . < tN−1 < tN = t so tk = tk/N . If we are given an initial condition at tk−1, then the
solution to (15) at tk is U(tk, tk−1).

Now let N → ∞, then

U(t1, 0) = 1− iH(0)

ℏ

U(t2, 0) = U(t2, t1)U(t1, 0) =
(
1− iH(t1)

ℏ

)(
1− iH(0)

ℏ

)
. . .

U(t, 0) = lim
N→∞

(
1− iH(tN−1)

ℏ

)
· · ·
(
1− iH(t1)

ℏ

)(
1− iH(0)

ℏ

)
= lim

N→∞

(
1− iH(t(N − 1)/N)

ℏ

)
· · ·
(
1− iH(t/N)

ℏ

)(
1− iH(0)

ℏ

)
(40)

It is interesting to consider the Hamiltonians H(t) as a random process and study the sta-
tistics of the time-evolution operator U(t, 0) = T

(
exp

(
−i
ℏ

∫
[0,t]

H(t)dt
))

, the product form of the
solution gives us an easier way to calculate them.

Let H(tk) ∈ Mat(n × n,C) be a stationary random process, its statistics is defined by the
measure

P [H]DH = lim
N→∞

N∏
k=0

n∏
i,j=1

P [H(tk)]dHij(tk), (41)

where P [H(t)] is the probability density functional. We are interested in the average

〈F [U ]〉 =
∫

F [U ]P [H]DH, (42)

where F is a functional of U(t, 0).

Using the product form of the solution, we can perform the Iwasawa decomposition ([8]):

U(tk, 0) = R(tk)D(tk)S(tk), (43)

where R, D, S represent “rotational”� “diagonal” and “shear” degrees of freedom of U(tk, 0): R

is an orthogonal matrix (RkiRkj = δij), D is diagonal, S is an an upper triangular matrix with
diagonal elements equal to 1.
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Substitue (43) into (15), we get

H = iℏ
∂

∂t
(RDS)S−1D−1R−1 = R(RT∂tR + (∂tD)D−1 + (∂tD)SS−1D−1)RT . (44)

Denote r = RT∂tR, d = (∂tD)D−1, s = D(∂tS)S
−1D−1, X = r + d+ s, then

H = iℏRXRT , (45)

Proposition 5. ([8]) d is diagonal, s is an upper triangular matrix with zeroes in the main
diagonal and r is antisymmetric:

d = diag(d1, . . . , dn), sij = 0 if i > j, rij = −rji. (46)

Now consider X(t) as an independent functional variable then (46) should be understood as

H[X] = iℏR[X]XRT [X]. (47)

Note that R only depends on r-component of X, we now can study the statistics of T -exponential
by a simple rotational T -exponential:

〈F [X]〉 = iℏ
∫

F [U [X]]P [R[X]XRT [X]]J [X]DX, (48)

where J [X] is the Jacobian. (See [9], [10] for concrete random processes)

Another statistics of interests is the Lyapunov spectrum:

Definition 3. The Lyapunov spectrum {λ1, . . . , λn} are the eigenvalues of

Λ = lim
t→∞

1

t
log(U(t, 0)), (49)

so Iwasawa decompostion of U(t, 0) also gives us an easier way to calculate them: they are
the diagonal elements of D(t).

These statistics, which is relevant to physics, will hopefully shed light on the zeta function.
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