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Introduction

For three variables 0 ≤ x ≤ y ≤ z ≤ 1, an iterated integral looks like∫ 1

0

(∫ z

0

(∫ y

0
f(x, y, z)dx

)
dy
)

dz, or simply
∫ 1

0

∫ z

0

∫ y

0
f(x, y, z)dxdydz.

The theory of iterated integrals was first invented by K. T. Chen in order
to construct functions on the infinite-dimensional space of paths on a
manifold and has since become an important tool in various branches of
math and physics.
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Iterated Integrals

Definition
Let M be a smooth manifold and ω1, ..., ωn be C-valued 1-forms on M
and let γ : [0, 1] → M be a path. Write

γ∗ωi = fi(t)dt,

for the pullback of the forms ωi to the interval [0, 1]. Define∫
γ
ω1 . . . ωn =

∫
0≤t1≤...≤tn≤1

fn(tn) · · · f1(t1)dt1 . . . dtn

=

∫ 1

0

∫ tn

0
· · ·

∫ t2

0
fn(tn)fn−1(tn−1) . . . f1(t1)dt1dt2 . . . dtn,

which will be called the iterated integral of ω1, ..., ωn along γ. Moreover,
define the iterated integral of empty product of 1-forms to be 1.
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Iterated Integrals

Proposition
Iterated integrals satisfy the following properties:
(a) If γ−1(t) = γ(1 − t) denotes the reversal of the path γ, then∫

γ−1
ω1...ωn = (−1)n

∫
γ
ωn...ω1.

(b) If α, β are two paths, denote the path obtianed by first traversing β
then α by αβ, then∫

αβ
ω1 . . . ωn =

n∑
i=0

∫
α
ω1 . . . ωi

∫
β
ωi+1 . . . ωn.
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Iterated Integrals

Proposition
(c) The shuffle property:∫

γ
ω1 . . . ωr

∫
γ
ωr+1 . . . ωr+s =

∑
σ∈Shuff(r,s)

∫
γ
ωσ(1) . . . ωσ(r+s),

where Shuff(r, s) is the set:

Shuff(r, s) =
{

all permutations σ of (r + s) indices such that
σ(1) < . . . < σ(r) and σ(r + 1) < . . . < σ(r + s)

}
.

Dasheng Wang (HSE) Iterated Integrals and Knizhnik–Zamolodchikov Equations June 2021 6 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Iterated Integrals

Proof: (a)∫
γ−1

ω1 . . . ωn =

∫ 0

1

∫ t1

1
. . .

∫ tn−1

1
f1(t1)f2(t2) . . . fn(tn)dtndtn−1 . . . dt1

=

∫ 0

1

∫ 0

tn
· · ·

∫ 0

t2

fn(tn)fn−1(tn−1) . . . f1(t1)dt1dt2 . . . dtn

= (−1)n
∫
γ
ωn . . . ω1.
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Iterated Integrals

(b) Let 0 < x < 1, then

{(t1, t2, . . . , tn) ∈ Rn : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1}

=
n∪

k=0
{(t1, . . . , tk) ∈ Rk : 0 ≤ t1 ≤ . . . ≤ tk ≤ x}

× {(tk+1, . . . , tn) ∈ Rn−k : x ≤ tk+1 ≤ . . . ≤ tn−1 ≤tn}.

(c) On the R.H.S. of (5), all (r + s) indices are ordered, but on the L.H.S.
only the r indices and the s indices are ordered, so on the R.H.S. we need
to count all permutations such that only the r indices and the s indices are
ordered.
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Dyson Series

Schrödinger Equation for the Time-evolution Operator

State ket R → Cn, t 7→ |v, t〉.
Consider its time evolution t0 7→ t from initial condition: |α, t0〉.
Denote the state ket at t obtained from the initial condition by |α, t0; t〉.
Define the time-evolution operator U(t, t0) by an equation which relates
the two kets:

|α, t0; t〉 = U(t, t0)|α, t0〉.

Proposition
The time-evolution operator satisfies the following properties:
(a) U†(t, t0)U(t, t0) = 1. (conservation of probability)
(b) U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0). (the compostion
property)
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Dyson Series

Define the infinitesimal time-evolution operator U(t0 + dt, t0):

U(t0 + dt, t0) = 1 − iHdt
ℏ

.

Applying the composition property to the time evolution operator at t0,
t1 = t and t2 = t + dt gives us the Schrödinger equation for the
time-evolution operator

iℏ ∂

∂tU(t, t0) = HU(t, t0).
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Dyson Series

Now let us solve this equation. In general, the Hamiltonians are
time-dependent and do not commute at differet times. Note that by the
definition of the time-evolution operator,

U(t0, t0) = 1,

write the differential equation by an integral equation

U(t, t0) = 1 − i
ℏ

∫ t

t0

H(s)U(s, t0)ds,

then we can apply Picard’s method to solve this equation by successive
approximation: let U0(t, t0) = U(t0, t0) = 1 be the constant function and
define for n ≥ 0,

Un+1(t, t0) = 1 − i
ℏ

∫ t

t0

H(s)Un(s, t0)ds,
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Dyson Series

then assuming t0 ≤ t1 ≤ . . . ≤ tn = t,

U1(t, t0) = 1 −
i
ℏ

∫ t

t0
H(t1)U0(t, t0)dt1,

U2(t, t0) = 1 −
i
ℏ

∫ t

t0
H(t2)U0(t, t0)dt1

+

(−i
ℏ

)2 ∫ t

t0

∫ t2

t0
H(t2)H(t1)U1(t, t0)U2(t1, t0)dt1dt,

. . .

Un(t, t0) = 1 +
∑
n≥1

(−i
ℏ

)n ∫ t

t0

∫ tn−1

t0
. . .

∫ t2

t0
H(t) . . . H(t2)H(t1)U0(t, t0)dt1dt2 . . . dt,

= 1 +
∑
n≥1

(−i
ℏ

)n ∫
t0≤t1≤t2≤...≤t

H(t) . . . H(t2)H(t1)dt1dt2 . . . dt,

. . .

If limn→∞ Un(t, t0) exists, it gives the solution and is called the Dyson series.
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KZ equation

Monodromy of the solution

Let M be a smooth manifold and Â a completed graded algebra over the
complex numbers. Choose a set ω1, . . . , ωp of C-valued closed differential
1-forms on X and a set c1, . . . , cp of homogeneous elements of Â of degree
1. Consider the closed 1-form

ω =

p∑
i=1

ωjcj

with values in Â. The Knizhnik-Zamolodchikov equation is a particular
case of the following very general equation

dI = ωI,

where I : M → A is the unknown function.
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KZ equation

Given a local solution I of the equation and a ∈ Â, we can extend a local
solution at x0 along a loop γ : [0, 1] → M we arrive to another solution I1,
also defined in a neighbourhood of x0. Let I1(x0) = aγ . Suppose that a0 is
an invertible element of Â. The fact that the local solutions form a free
one-dimensional Â-module implies thatthe two solutions I0 and I1 are
proportional to each other: I1 = I0a−1

0 aγ . Therefore, we get a
homomorphism π1(X) → Â∗from the fundamental group of X into the
multiplicative group of the units of Â, called the monodromy
representation. Analogous to the Dyson series, solving this equation
iteratively gives

I(t) = 1 +
∞∑

m=1

∫
0≤t1≤...≤tn≤1

ω(tn) · · ·ω(t1)

The value I(1) represents the monodromy of the solution over the loop γ.
Each iterated integral Im(1) is a homotopy invariant (of “order m”) of γ.
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KZ equation

Let M = C3 \ H, where H = {z1 = z3} ∪ {z1 = z2} ∪ {z2 = z3}. (The
configuration space of 3 distinct points in C). Note that a loop γ in this
space can be identified with a pure braid on 3 strands. The horizontal
chord diagrams on 3 strands Ah(3) is generated by

subject to the relations
[ujk, ujl + ukl] = 0,

so we have
Proposition
Ah(3) is a direct product of the free algebra on two generators u12 and u23,
and the free commutative algebra on one generator u = u12 + u23 + u13.
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KZ equation

The KZ equation for 3 points is

dI = 1
2πi (u12dlog(z2 − z1) + u13dlog(z3 − z1) + u23dlog(z3 − z2)) I

which is a partial differential equation in 3 variables. Make the substituion

I = (z3 − z1)
u

2πi G,

this equation can be reduced to

dG =
1

2πi

(
u12dlog

(
z2 − z1
z3 − z1

)
+ u23dlog

(
1 − z2 − z1

z3 − z1

))
G.

Denoting z2−z1
z3−z1

by z, we see that it satisfies the ODE (the reduced KZ
equation),

dG
dz =

(
A
z +

B
z − 1

)
G,

where A = u12
2πi , B = u23

2πi .
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KZ equation

Definition
Multiple polylogarithms are nested sum of the form

Lis1,...,sk(z1, . . . , zk) :=
∑

n1>...>nk>0

k∏
j=1

znj
j

nsj
j
,

where s1, . . . , sk and z1, . . . , zk are complex numbers such that the sum
converges. In particular, setting zj = 1 gives us multiple zeta values

ζ(s1, . . . , sk) :=
∑

n1>...>nk>0

k∏
j=1

1
nsj

j
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KZ equation

Iterated integrals on C \ {0, 1}

The multiple polylogarithms (in one variable) can be defined via iterated
integrals:
Let X = {x0, x1} be an alphabet in two letters and X× be the set of words
in x0, x1 and the empty word e. Let Q〈x0, x1〉 be the vector space
generated by the words in X, equipped with the shuffle product:

xi1 . . . xir � xir+1 . . . xir+s =
∑

σ∈Shuff(r,s)
xσ(1) . . . xσ(r+s),

and where e� w = w� e = w for all w ∈ X∗.
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KZ equation

To every word w ∈ X∗, we associate a multivalued function Liw(z) on
M = C \ {0, 1} as follows:
Let ω0 = dz

z , ω1 = dz
z−1 be 1-forms defined on M, γ be a smooth path from

0 to z on M.
1) If w ends with x1, write w = xsk−1

0 x1 . . . xs1−1
0 x1 and let

Liw(z) =
∫
γ
ω1ω

sk−1
0 ω1 . . . ω

s1−1
0 = Lis1,...,sk(1, . . . , 1, z1)

Denote Lis1,...,sk(z1, 1, . . . , 1) by Lis1,...,sk(z). (multiple polylogarithm in one
variable)
To see the equality, note that

d
dzLis1,...,sk(z) =

{
1
z Lis1−1,...,sk(z), if s1 > 1,

1
1−zLis2,...,sk(z), if s1 = 1.
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KZ equation

2) Set
Lixn

0
(z) = 1

n! logn(z),

then any word can be composed by xn
0 and words which end with x1 by the

composition property of iterated integrals.
Consider the generating series

L(z) =
∑

w∈X∗

wLiw(z),

it defines a multivalued function on M taking values in

C[[X]] = {
∑

w∈X∗

Sww : Sw ∈ C},

the ring of non-commutative formal power series in the words X∗, with the
multiplication being the concatenation of words (w1 · w2 = w1w2).
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KZ equation

L(z) satisfies the differential equation
d
dzL(z) =

(
x0
z +

x1
z − 1

)
L(z),

which is the one-dimensional Knizhnik–Zamolodchikov equation.
Note that for words w 6= xn

0,

lim
z→0

Liw(z) = 0,

we have
L(z) ∼ exp(x0logz) as z → 0.

Similarly, there exists another solution

L1(z) ∼ exp(x1log(1 − z)) as z → 1.

Define the Drinfel’d associator Φ(z) by an equation which relates the two
solutions:

L(z) = L1(z)Φ(z),
we denote it by Φ(x0, x1).
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KZ equation

Proposition
The coefficients of Φ(x0, x1) are multiple zeta values.

First, for all words w ∈ x0X∗x1, Liw(z) converges at the point z = 1, we
have ζ(w) = Liw(1). Next, we can use the shuffle property
ζ(w)ζ(w′) = ζ(w� w′)to write any word by x0, x1 and x0X∗x1:

ζ(x0) = ζ(x1) = 0,

ζ(x0x0) =
1
2ζ(x0 � x0) =

1
2ζ(x0)ζ(x0) = 0,

ζ(x0x1) = ζ(2),
ζ(x1x0) = ζ(x1 � x0 − x0x1) = ζ(x0)ζ(x1)− ζ(x0x1) = −ζ(2),

ζ(x1x1) =
1
2ζ(x1 � x1) = 0,

. . .

We have Φ(x0, x1) = 1+ ζ(2)[x0, x1] + ζ(3)([x0, [x0, x1]− [x0, x1], x1]) + . . .
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Kontsevich Integral

In the construction of the Kontsevich integral, R3 where the tangles are
defined is represented as a product of complex plane C with coordinate z
and real line R with coordinate t.

Intuitively, the Kontsevich integral counts the number of “twists” between
strands in a tangle. For example, the number of twists between two
strands in the above figure can be computed as

1
2πi

∫ 1

0

dz1 − dz2
z1 − z2

.
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Kontsevich Integral

Scales of symmetries: in the following figure, the twists of tubes produce
an underlying twist for the twisting strands inside the tubes, if we call the
twists of tube “first order” (ε), then the twists of strands are of second
order (ε2).
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Kontsevich Integral

To construct the Kontsevich integral, cut the knot into several parts by
some slices on t such that each part contains one of the three basic events:
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Kontsevich Integral

Now we can replace a knot by chord diagrams according to the followings
rules:

m,M 7→ 1,
B+ 7→ R, B− 7→ R−1,

A+ 7→ Φ, A− 7→ Φ−1
(1)

where

.

Then compute the product of these diagrams from top to bottom.
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Drinfeld Associator
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